
3D Modelling and Animation Research Project 2012

 0

A
le

x
H

u
gh

es

2
0
1
2

3
D

 M
o

d
e

ll
in

g
 a

n
d

 A
n

im
a

ti
o

n

R
e

se
a

rc
h

 P
ro

je
ct

3D Modelling has been with us for some years. It has become a part
of many industries. From entertainment and computer games to
manufacturing, education and medicine. In this research project, I
look at the application of 3D technology within the sphere of
Education and generally discuss the technical requirements for 3D
motion capture, model making and animation.

Chichester College
HND Computing Year 2

Unit 38 3D Modelling and Animation

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

1

Uses of 3D modelling and animation within education
The internet revolutionized education. For the first time people were no longer confined to what

the tutor knew off the top of their head or what the school-issued textbook had to offer. Hypertext

documents could answer any question.

3D modelling could have the same effect.

Early steps

Educational 3D modelling undoubtedly started in Utah with the work of Ed Catmull (who went on to

found Pixar Studios) and if you haven’t seen it, you really should see this short film which would

have taken the University’s most powerful computer an age to render.

http://vimeo.com/16292363#

Flight Simulators

With literally sky-high budgets, it was the

Military who pioneered flight simulator

technology. The demand was there even before

the technology had evolved with “model

boards” being used (where a small video

camera is flown over a physical model and the

resultant video presented to the trainee pilot.

The first full visual systems were produced by

the General Electric Company for the space

program and featured patterned ground

objects. However it was well into the 1970’s

before the model-boards were retired and CGI

flight simulators became common place.

Modern simulators use a 180 degree curved

projection screen and hydraulics to simulate

acceleration.

Despite the great expense airlines and the

Military have always been keen to invest in

Flight Simulation. Safety and expertise are

paramount in these industries and scenarios can

be simulated that would never even occur in

training sessions.

(Page) Breif History of Flight Simulation

http://vimeo.com/16292363
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.5428&rep=rep1&type=pdf

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

2

Molecular Models and Biology

When the structure of DNA was discovered in

1953 by Rosalind Franklin, Francis Crick and

James Watson, it could only be visualized with a

massive stick and ball model.

Nowadays, the standard visualizer for chemistry

hyper-documents is jMol. This java applet runs

on nearly any platform and takes a variety of

formats for chemical formulas.

This allows users not only to see a model but

also to rotate and enlarge it in real time.

More sophisticated molecular modelling

programs exist in the field of drug design and

biochemistry.

It is still impossible to understand how enzymes (the human chemicals responsible for actually

performing the tasks of a living cell) interact with chemicals. However using molecular models, the

reactions can be simulated.

Applications for this include Amber from University of San Francisco.

This molecular dynamics program takes Cartesian coordinates of each atom in a molecule and

Topology information (i.e. which atoms are bonded together) and Force fields (which is information

about the exact electromagnetic and other fundamental forces generated by the bonds and atoms in

the molecule) and uses it to simulate reactions.

Combined with a graphical interface this allows students to see how things happens and is an

invaluable tool for designers of bio-molecular processes to create new chemicals which may have

potential as drugs.

http://ambermd.org/doc12/AmberTools12.pdf (UCSF)

When I was at school, models of the human vascular system used to be created literally by filling the

veins of a research body with latex and then

dissolving off the flesh in acid. There was no

other way of creating them.

Now 3D models for all anatomical views have

been created and are an invaluable tool for

biology classrooms.

Another advantage of the models is they allow

students to learn about anatomy at an earlier

age as dissection becomes only necessary for

much more advanced studies.

http://en.wikipedia.org/wiki/Rosalind_Franklin
http://en.wikipedia.org/wiki/Francis_Crick
http://en.wikipedia.org/wiki/James_D._Watson
http://jmol.sourceforge.net/
http://ambermd.org/
http://www.ucsf.edu/
http://ambermd.org/doc12/AmberTools12.pdf

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

3

http://www.turbosquid.com/3d-models/3d-female-circulatory-heart/694548(Polygon Puppet)

Architecture

Of all the people who study to become

architects, only a small percentage go on to

create their own visions as public buildings. It is

a 6 year degree course and a great deal of the

course used to comprise making models out of

paper and card.

This used to be time consuming and not all that

realistic with regard to materials.

3D modelling has revolutionized the field.

http://www.turbosquid.com/3d-models/3d-female-circulatory-heart/694548

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

4

Autodesk, the company who originally created the CAD/CAM package AutoCAD, have diversified the

product almost unrecognisably from its engineering origins.

AutoCAD provides support for a vast library of materials available to the building trade from glass

bricks to steel girders. Architectural designs can be drawn up and visualized as they are being

created exactly as they would appear when complete.

http://students.autodesk.com/
http://www.autodesk.co.uk/adsk/servlet/pc/index?siteID=452932&id=14667872

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

5

student work(Moderbacher)

student work (Sabry)

http://students.autodesk.com/?nd=showcase_detail_page&gallery_id=18518&jid=191413
http://students.autodesk.com/?nd=showcase_detail_page&gallery_id=18516&jid=191413

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

6

ScanLab

Based at UCL’s Bartlett School of Architecture, ScanLAB is a project dedicated to producing 3d

models through laser scanning.

http://vimeo.com/30737412(ScanLAB)

The models are made by a combined photographic and laser imaging. A colour photograph is taken

of the scene. Then, through the same lens a video is taken of a laser scanning across the scene from

a different angle. Because the origin and direction of the laser beam is known, the point at which it

hits an object will be displaced by parallax so its 3d coordinates can be calculated (more on this

later). When you know where a voxel is and you know its colour you can add it to your scan.

It takes many scans to build a model and the work is usually done at night to ensure a clear image of

the laser spot. Once the scans are done, the hard work of stitching the scans together begins.

The Techniques

Model Making

Nowadays there are many different tools for creating 3D models. From Autodesk Max and Maya to

Daz3D and Poser. Of particular interest to anyone who wants to do this commercially without much

outlay is Blender – an Open Source 3d graphics environment project based in Holland. The Blender

Foundation also works with up and coming film-makers and you can submit ideas to a competition.

If you win you can get an expenses paid trip to Amsterdam to develop your project and work on

putting together a team from members of the community. See http://projects.blender.org/.

The techniques for 3d sculpting are many and diverse and too numerous to be mentioned here.

There are several websites devoted to selling 3d models for games films and just posing scenes.

ucl.ac.uk
bartlett.ucl.ac.uk
http://www.scanlab-ucl.co.uk/
http://vimeo.com/30737412
http://www.blender.org/
http://projects.blender.org/

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

7

One advance I look forward to is virtual reality modelling using Vuzix Augmented Reality glasses.

The Wrap 920AR glasses present Virtual Reality

in 920 line resolution and at the same time

capture video through stereoscopic cameras.

This makes 6 degrees of freedom head tracking

accurate and easy.

What is more you could use the camera’s

output to capture the position of a fingertip or

tool in 3d (especially with other cameras used

as well)

This could provide for literal 3D sculpting.

The maxReality interface is already written (though expensive at £1500 for glasses plus software).

Cameraless VR wrap glasses come in at £399.99 with an attachable single usb camera at £39.98

which seems like it is calling out for someone to hack blender to use this.

3D Scanning

Several devices exist that will do 3D scanning.

Structured Light

Structured light scanning is done with a video projector and digital cameras.

http://mesh.brown.edu/3DPGP-2009/homework/hw2/hw2.html (Brown University)

The projector emits a series of patterns of stripes starting with all white, then half white / half black,

then quarters and so on.

The cameras (at offset angles) pick up the boundary between light and dark stripes and get the 3d

shape by parallax (wikipedia).

This technique works best on static objects because you have to get a lot of overlaid images. For

1024 resolution you will need 10 images at 24 fps capture rate that is nearly half a second.

http://www.vuzix.com/home/
http://store.vuzix.co.uk/acatalog/Wrap_920AR_MAXimum_3D_bundle.html
http://store.vuzix.co.uk/acatalog/Wrap_920_VR_Bundle.html
http://store.vuzix.co.uk/acatalog/CamAR.html
http://mesh.brown.edu/3DPGP-2009/homework/hw2/hw2.html
http://en.wikipedia.org/wiki/Parallax

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

8

You can do better than this. In fact you can do a lot better. Video Projectors work on an element

called a Digital Micro Mirror Device. Because the lcd can be only on or off, 256 shades of red, green

and blue are produced by flashing the element on and off for varying lengths of time (pulse width

modulation PWM (Wikipedia)). In fact, if you only want white or black a DLP projector is capable of

generating over 50,000 binary images per second. http://johnnylee.net/projects/thesis/ (Lee)

So your limitation is more likely to be your camera.

As a rule of thumb, if the total movement of the object throughout the process is less than a quarter

the width of the smallest graduation, good software should be able to sort it out.

Laser Scanning

In laser scanning a line laser projects a thin line across an image onto a calibrated back screen. The

offset camera can then resolve the shape of the 3d model.

You can set up a home scanner using a laser for minimal cost.

You need the laser, calibrated background and a camera.

Software is available from http://www.david-laserscanner.com/

(David Lasercanner) to process both laser and structured light

scans. It is recommended not to scan human beings with a laser.

http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Pulse-width_modulation
http://johnnylee.net/projects/thesis/
http://www.david-laserscanner.com/

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

9

Commercial laser-scanning devices are still expensive but are suitable for scanning larger areas such

as architecture and crime scenes.

http://www.faro.com/usa/contentpages/colorscanner/

Kinect for Windows

Microsoft’s newly revamped, newly re-priced Kinect scanner is actually incredibly useful to the home

hobbyist.

Apart from the price, the Windows version differs from the xBox version in having a near range

setting, an extra chip and the software to connect to windows.

At nearly £200 pounds, it is not cheap but allows for basic motion capture, 3d scanning and control

of models in real time.

http://www.faro.com/usa/contentpages/colorscanner/

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

10

New Look - Nap On The Bow (Tim & Joe)

Here is an example of a pop video made using Kinect Camera.

http://vimeo.com/30427082

Interactive Puppet Prototype with Xbox Kinect (Watson)

http://vimeo.com/16985224

http://vimeo.com/30427082
http://vimeo.com/16985224

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

11

The Mathematics and Computing of 3D

The .obj file

There are many ways of representing a 3D model but .obj files are by far the most user friendly. The

coordinates are presented in ASCII format with groups, materials, vertices, normal all referenced by

simple letter descriptions at the beginning of the line.

Explanation of the file.

mtllib refers to a material file. this could be a plain Lambert render or a texture map.

v refers to a vertex in the model

vn refers to the normal of the vertex (this is useful in deciding what colour the polygon will be

shaded and is also used when shape smoothing is carried out.

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

12

Once we get into the faces,

f represents the definition of a new face and the 3 number separated by slashes (/) represent, the

vertex number (v) the index of the 2d texture coordinate of that (vt).

and finally, the index of the normal for that vertex (vn).

Here the texture map coordinates have been added at each face but they can come earlier in the

document too. It is the sequential number that counts.

For a full specification of the .obj format see http://www.martinreddy.net/gfx/3d/OBJ.spec (Reddy)

I have written a program in Visual Basic for Parsing and Rendering 3D content (quite badly as it goes

– I was in the Nat Dip year at the time) but it is relatively easy to import objects into WCF just by

parsing and then use the more powerful 3D commands in the language to render. Here is the output

of my first shader.

http://www.martinreddy.net/gfx/3d/OBJ.spec

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

13

Transformation Matrices

We all know the principal behind hierarchical

modelling – “The head-bone’s connected to the

neck-bone …” and so on. But how is it actually

done in real applications.

3D points or vertices are represented by vectors

in Mathematics which are tuples of 3 numbers.

We are provides us with various techniques for

manipulating vectors.

Translation: if you wanted to move a point 2cm

in the x direction 3cm in the y direction and 4

cm in the z direction you would add those numbers to its coordinates right?

What you have just done is vector addition. OK, so we can get our fighter flying through the air

whilst standing bolt upright.

Rotation. The traditional way to rotate a vector about a given axis is by a 3x3 matrix multiplication.

Here is the output for the 3x3 matrix for rotating through angle theta radians about the z axis.

The problem was that if you wanted to do a translation and a rotation you had to do separate

operations.

So the 4D transformation Matrix was created.

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

14

Here the rotation matrix again just adds an extra column and row with just a 1 in the corner.

But what is useful is that translation can be done as a multiplication

The way this works is the 3D vector actually has a fourth coordinate which is always 1 and the

translation matrix is actually multiplying various numbers of 1s and adding them on.

So now the two transforms can be piggy-backed.

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

15

The last operation to be performed on the vector is written first.

Notice how it is not the same to rotate about the z-axis and then translate through {3,4,5} as it is to

translate through {3,4,5} and then rotate.

Once you have the matrix right for the upper arm (which in general will be 3 rotations and a

translation) you can piggy back the lower arm off of it.

Here is a good discussion of Matrix Transformations for 3d programming.

http://www.codeproject.com/Articles/42086/Space-and-Matrix-Transformations-Building-a-3D-Eng

http://msdn.microsoft.com/en-us/library/ms753347.aspx

http://www.codeproject.com/Articles/42086/Space-and-Matrix-Transformations-Building-a-3D-Eng
http://msdn.microsoft.com/en-us/library/ms753347.aspx

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

16

Rendering Techniques

Once the mesh has been manipulated into the shape you want, it is time to render.

The first thing to be applied is 1 more matrix transformation for the position of the camera. This will

be a translation and a rotation and sets the camera at a zero position and the scene around it.

Then a filter is applied so that only polygons within the field of view will be rendered and then the

scene is put through a projection matrix. This maps the 3d coordinates to a 2d plane.

The winding order of polygons is important (to save time rendering the inside of solid objects (which

should never be seen) polygons are rendered on the “heads” side only). To determine which side is

which you look at the winding order. If you look at each point in the order in which it appears in the

polygon on your 2d screen. If they go anti-clockwise it is an anti-clockwise winding order and the

polygon is rendered. Otherwise the system will not bother.

Next comes the z-ordering. Obviously polygons which are behind others will be hidden and polygons

which are partially obscured must be part rendered. Where many renderers go wrong is when

polygons actually cut each other and this sort of model should be avoided.

The actual colour to render a polygon can be defined most simply by a law called Lamberts law of

Reflection.

This states that the intensity of light reflected from an object is proportional to the cosine of the

angle from the normal to the surface and the incident beam.

For a detailed discussion on rendering see

http://www.cs.brown.edu/courses/cs123/lectures/03_GL_3D.pptx (Brown University)

The code in VB to my renderer is included as an appendix. I’m not sure if I even speak VB anymore

and will try to write a more logical one later in the year if time permits.

http://www.cs.brown.edu/courses/cs123/lectures/03_GL_3D.pptx

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

17

Virtua Project

I have for some time been working on an implementation of Virtua Fighter 1 in order to use these

Matrix techniques on a hierarchical model. It is a bit retro as now bone-based animation has taken

over but I thought it would be a good learning resource and I had hoped to have a slider bar mock up

of the character done for this assignment.

The model is ultra low poly so lends itself to experimentation in WPF.

Unfortunately time has run out and all I have are the head and arms so I will simply include this

teaser.

Motion Capture

Visual Tracker Motion Capture

We were lucky enough to go on a departmental visit to Portsmouth University’s Motion Capture

Suite where Alex Coulson demonstrated the techniques for motion capture using visual markers.

http://www.port.ac.uk/
http://mocap.port.ac.uk/
http://mocap.port.ac.uk/

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

18

The suite comprises 12 cameras which work in near infrared synchronised with LED flash at 120Hz.

Each camera costs around £5000.

The cameras capture high reflectivity markers (polystyrene balls wrapped in scotch hi visibility tape).

Even the markers are expensive in mocap. The cameras are 1MP and can resolve the scene to sub

millimetre accuracy. They do this by circle centring. The camera outputs a circle where the ball is and

the software takes the centre of that circle.

The system works by seeing each marker on two or more cameras at the same time and then solving

its position in 3d space by parallax. The difficulty lies with multiple markers and knowing which is

which between the different images on the cameras. As markers become obscured on 1 camera and

appear on the next the computer must keep track of them.

Another difficulty comes from spherical imperfections in the lens of the camera and camera position

movement.

Calibrating the system

If the positions of the cameras were set in stone and they behaved like perfect pin-hole cameras

solving would be easy. However slight movements and the spherical nature of optical systems leads

to barrel and pincushion distortion in the image. see

http://en.wikipedia.org/wiki/Distortion_(optics)

(Wikipedia)

The system can work with this. It does this by a

calibration process.

The first thing the operator does is to take a “wand” –

a fixed metal object with 4 balls on it – and wave it

throughout the space to be captured at various angles

and positions. This allows the system to gauge what standard distances and angles look like and

build a correction algorithm.

The wand is then placed on the floor to set the origin and ground level (there is nothing more

embarrassing than a mocap in which the character’s feet do not touch the ground.)

Attaching the markers

http://en.wikipedia.org/wiki/Distortion_(optics)

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

19

because the cameras must have a clear view of the

markers, actors wear lycra suits. The markers are

attached individually at the start of the shoot. It takes

53 markers to capture a human body (without fingers

or face).

Because it would be impossible to attach a marker at

the centre of a joint, they are placed on the axis of

rotation of joint at either side, it is the job of the

computer to figure out where the centre of the joint

would lie in 3d space.

Once the actor is marked up, it is time to calibrate

again.

Calibrating for the actor

The actor first adopts the so-called T-Pose. This allows

the system to measure the lengths of their limbs and

body dimensions. They then perform a series of

movements to calibrate the system for the position of

the markers on their bodies.

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

20

Capturing actual motion

Once the system has been calibrated for the actor they can move around and the markers on their

bodies will appear on the screen (usually as white dots) but the computer is able to determine which

dot is attached to which part of the actor’s body (a technique known as tracking)

Then the computer can interpolate the position of each joint in the skeleton in real-time. This is

known as solving.

 If 1 marker gets obscured it is usually not a problem, if too many get hidden the model eventually

breaks down and an attempt at solving is displayed which usually looks more like an artefact.

If something drastic happens like a marker falling off during capture the scene may need to be

reshot. Often however they allow the scene to continue in the hope that something may be

captured as you can always “get the trackers to sort it” The trackers are people who work in post-

production cleaning up mocap data.

To save disk space, the cameras do not record in full motion video. Rather they only record in

monochrome and as the signal from the marker is super-bright, a threshold level is applied and the

recorded video will be a pure black and white image of just the circles for the markers.

Live Rendering

Although most motion capture data is cleaned up then applied to a model later on, it is possible to

animate and render a model live using Autodesk Motion Builder. This allows a real-time display of

the action which can even be interpreted by a virtual camera (literally a video screen attached to 4

markers on a metal frame). The suite captures the position of the “camera” and then feeds the

appropriate video to the monitor. The cameraman can then get the correct shot.

Motion can be reshot after the actors have left to get the optimum angle.

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

21

Motion Capture without Trackers

It is possible, though hard to capture motion without trackers. At Stanford University , the

Markerless Motion Capture Project (Stanford University) has done just that.

The project captures video from all angles as before but instead of looking for markers, it creates a

3d object called a hull. This is done by taking the 3d cones projected from each camera’s lens to the

outline of the actor and extending them, the cones are then intersected to produce a hull that will

contain (hopefully quite tightly) the actor’s form.

The hull is then compared to a known database built up of 3d models of the actor in variable poses

and the system works backwards to solve for the skeleton.

The process is highly processor intensive and may have issues around clusters of people but allows

actors to wear their own clothes which are captured as well.

Portable Motion Capture with moving sensors

Mocap is not just for film and games.

An interesting structured light approach has been pioneered at MIT and is used to as an educational

resource improve Motor skills.

A structured light gray code is projected, not using a DLP projector but by an array of 8 IR diodes.

The markers in the suit are actually passive light detectors similar to those found in TV remote

controls. They ascertain their position in x and y relative to the projector from the light signals they

receive. Using 2 or more projectors mocap can be done in 3D.

The markers then relay their position to the computer via radio. The whole marker circuit is less than

the size of a US coin.

There is a no limit to the number of markers you can have because they work in parallel and solving

is easier because you already know which marker is which (the tracking is already done).

The full paper can be found here.

http://dspace.mit.edu/bitstream/handle/1721.1/61252/701866466.pdf (Miaw)

http://www.stanford.edu/
https://ccrma.stanford.edu/~stefanoc/Markerless/Markerless.html
http://www.mit.edu/
http://dspace.mit.edu/bitstream/handle/1721.1/61252/701866466.pdf

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

22

Motion Capture: Is it just a clever gimmick?
I have been fascinated by Motion Capture ever since I first heard of it but not everybody feels this

way. My partner says if someone is going to act she would rather see their real face and not put the

many technicians and crew involved in a film out of a job.

The counter argument to this is something like Renaissance, the 2004 French CGI film shot entirely in

solid black and solid white (monochrome) to look like a comic book which achieved a stylised effect

of a futuristic Paris which would not have been possible without the use of this technique.

The sheer “Mask”-like possibility of putting on any CGI character and acting through this is attractive

to me and many films have used it to good effect.

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

23

The influence on the computer games industry has been profound. Since Space Invaders, Virtual

Reality has come a really long way and games today are just starting to access the sort of

photorealism that users deserve. It has been a huge investment by gamers from every slot machine

and copy sold into the technology which will make the future of VR worlds a reality.

Gaming now represents a bigger market than film and music put together so could be viewed as one

of the dominant art-forms of our culture.

The possibility of augmented reality and immersive worlds powered by mobile technology opens up

new possibilities of interactive gaming and I wonder how long it will be before “holodecks” start

appearing in amusement arcades.

Of course MoCap has technical uses in industry and science and we have seen earlier an application

in special needs education.

Virtual Reality too is becoming more available with the introduction of WebGL (a pared down

version of OpenGL) allowing 3d models to be displayed directly by web browsers.

Early Chrome demos can be seen at http://www.chromeexperiments.com/webgl/ (Chrome

Experiements)

http://www.webdev20.pl/skins/default/js/demos/solar_system/index.html (webdev20.pl)

http://www.chromeexperiments.com/webgl/
http://www.webdev20.pl/skins/default/js/demos/solar_system/index.html

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

24

All in all it seems like Virtual reality is a technology whose time has come with the standard gaming

Video Card now powerful enough to do reasonable quality rendering.

With model making sites like http://www.turbosquid.com, http://daz3d.com selling completed

models there is a lot of interest in the subject and it seems the only thing holding people back is the

expense of the software – this is something that better publicity for Blender could change.

http://www.turbosquid.com/
http://daz3d.com/

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

25

Bibliography

Brown University. (n.d.). 3D Photography and Geometry Processing. Retrieved from

http://mesh.brown.edu/3DPGP-2009/homework/hw2/hw2.html

Brown University. (n.d.). 3d with OpenGL. Retrieved from

http://www.cs.brown.edu/courses/cs123/lectures/03_GL_3D.pptx

Chrome Experiements. (n.d.). WebGL experiements. Retrieved from

http://www.chromeexperiments.com/webgl/

David Lasercanner. (n.d.). Retrieved from http://www.david-laserscanner.com/

Lee, J. (n.d.). Hybrid Infrared and Visible Light Projection. Retrieved from

http://johnnylee.net/projects/thesis/

Miaw, D. (n.d.). Second Skin: Motion Capture with Actuated Feedback for Motor Learning. Retrieved

from http://dspace.mit.edu/bitstream/handle/1721.1/61252/701866466.pdf

Moderbacher, S. (n.d.). Student Work. Retrieved from

http://students.autodesk.com/?nd=showcase_detail_page&gallery_id=18518&jid=191413

Page, R. L. (n.d.). Breif History Of Flight Simulation. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.5428&rep=rep1&type=pdf

Polygon Puppet. (n.d.). Female anatomy. Retrieved from Turbosquid:

http://www.turbosquid.com/3d-models/3d-female-circulatory-heart/694548

Reddy, M. (n.d.). .obj specification. Retrieved from http://www.martinreddy.net/gfx/3d/OBJ.spec

Sabry, K. (n.d.). Retrieved from

http://students.autodesk.com/?nd=showcase_detail_page&gallery_id=18516&jid=191413

ScanLAB. (n.d.). The Angel Building, AHMM Architects. Retrieved from http://vimeo.com/30737412

Stanford University. (n.d.). Markerless Motion Capture Project. Retrieved from

https://ccrma.stanford.edu/~stefanoc/Markerless/Markerless.html

Tim & Joe. (n.d.). New Look - Nap On The Bow. Retrieved from http://vimeo.com/30427082

UCSF. (n.d.). AmberTools12 Reference Manual. Retrieved from University of Callifornia at San

Francsico Amber Molecular Dynamics Project:

http://ambermd.org/doc12/AmberTools12.pdf

Watson, T. (n.d.). Interactive Puppet Prototype with Xbox Kinect. Retrieved from

http://vimeo.com/16985224

webdev20.pl. (n.d.). Solar System. Retrieved from

http://www.webdev20.pl/skins/default/js/demos/solar_system/index.html

wikipedia. (n.d.). Retrieved from http://en.wikipedia.org/wiki/Parallax

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

26

Wikipedia. (n.d.). Distortion (optics). Retrieved from http://en.wikipedia.org/wiki/Distortion_(optics)

Wikipedia. (n.d.). Pulse Width Modulation. Retrieved from wikipedia.org:

http://en.wikipedia.org/wiki/Pulse-width_modulation

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

27

Appendix 1: Renderer in VB.net (Alex Hughes)
Imports System.IO

Public Class Form1

 Dim StreamToDisplay As StreamReader

 Private Sub Form1_load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 End Sub

 Private Sub btnOpen_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnOpen.Click

 OpenFileDialog1.Filter = "Object Files (*.obj)|*.obj"

 If OpenFileDialog1.ShowDialog() = DialogResult.OK Then

 StreamToDisplay =

My.Computer.FileSystem.OpenTextFileReader(OpenFileDialog1.FileName)

 ReadPreamble()

 ReadName()

 ReadVertices()

 ReadFaces()

 StreamToDisplay.Close()

 End If

 End Sub

 Private Sub ReadPreamble()

 Do

 LineOfText = StreamToDisplay.ReadLine()

 strAllText = strAllText & LineOfText & vbCrLf

 Loop Until LineOfText = ""

 End Sub

 Private Sub ReadName()

 Do

 LineOfText = StreamToDisplay.ReadLine()

 strAllText = strAllText & LineOfText & vbCrLf

 Loop Until LineOfText = ""

 End Sub

 Private Sub ReadVertices()

 intVertexNo = 0

 Do

 LineOfText = StreamToDisplay.ReadLine()

 strVert = Split(LineOfText, " ", 5)

 If strVert(0) = "v" Then

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

28

 intVertexNo = intVertexNo + 1

 ReDim Preserve decVertices(2, intVertexNo)

 For nl As Integer = 0 To 4

 strAllText = strAllText & strVert(nl) & " "

 Next nl

 strAllText = strAllText & vbCrLf

 For nl As Integer = 0 To 2

 decVertices(nl, intVertexNo) = CDec(strVert(nl + 2))

 Next nl

 ElseIf strVert(0) = "#" Then

 strAllText = strAllText & strVert(1) & vbCrLf

 strAllText = strAllText & intVertexNo & vbCrLf

 End If

 Loop Until LineOfText = ""

 End Sub

 Private Sub ReadFaces()

 intFaceNo = 0

 Do

 LineOfText = StreamToDisplay.ReadLine()

 strFace = Split(LineOfText, " ", 5)

 If strFace(0) = "f" Then

 intFaceNo = intFaceNo + 1

 ReDim Preserve intFaces(2, intFaceNo)

 For nl As Integer = 0 To 3

 strAllText = strAllText & strFace(nl) & " "

 Next nl

 strAllText = strAllText & vbCrLf

 For nl As Integer = 0 To 2

 intFaces(nl, intFaceNo) = CDec(strFace(nl + 1))

 strAllText = strAllText & intFaces(nl, intFaceNo)

 Next nl

 ElseIf strFace(0) = "#" Then

 strAllText = strAllText & strFace(1) & vbCrLf

 strAllText = strAllText & intFaceNo & vbCrLf

 End If

 Loop Until LineOfText = ""

 End Sub

 Private Sub PrintArrays()

 strAllText = intVertexNo & " vertices" & vbCrLf

 For nc As Integer = 1 To intVertexNo

 For nl As Integer = 0 To 2

 strAllText = strAllText & decVertices(nl, nc) & " "

 Next nl

 strAllText = strAllText & vbCrLf

 Next nc

 strAllText = strAllText & vbCrLf & intFaceNo & " faces" & vbCrLf

 For nc As Integer = 1 To intFaceNo

 For nl As Integer = 0 To 2

 strAllText = strAllText & intFaces(nl, nc) & " "

 Next nl

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

29

 strAllText = strAllText & vbCrLf

 Next nc

 ' txtObject.Text = strAllText

 End Sub

 Private Sub RenderObjectWireframe()

 Dim zVertex(intFaceNo) As Decimal

 For nc As Integer = 1 To intFaceNo

 zVertex(nc) = 0

 For nl As Integer = 0 To 2

 zVertex(nc) = decVertices(2, intFaces(0, nc))

 Next nl

 Next nc

 ' Array.Sort(zVertex, intFaces)

 Dim FrontBackFace(intFaceNo) As Boolean

 Dim Normal(2, intFaceNo)

 For nc As Integer = 1 To intFaceNo

 Next

 Dim scale As Decimal = 5

 Dim lens As Decimal = 100

 Dim Zoff As Decimal = 10000

 Dim Xoff As Integer = -1500

 Dim Yoff As Integer = 500

 decVertices(0, 0) = 0

 decVertices(1, 0) = 0

 decVertices(2, 0) = -Zoff / scale

 Dim PenColor As New Pen(Color.Green)

 Dim x(2) As Decimal

 Dim y(2) As Decimal

 Dim z(2) As Decimal

 GraphicsFun = Me.CreateGraphics

 For nc As Integer = 1 To intFaceNo

 lblMessage.Text = nc

 For nl As Integer = 0 To 2

 x(nl) = decVertices(0, intFaces(nl, nc))

 y(nl) = decVertices(1, intFaces(nl, nc))

 z(nl) = decVertices(2, intFaces(nl, nc))

 Next nl

 Dim sX(2) As Integer

 Dim sY(2) As Integer

 For nl As Integer = 0 To 2

 sX(nl) = CInt(Xoff + (x(nl) * scale * lens / (z(nl) * scale

+ Zoff)))

 sY(nl) = CInt(Yoff - (y(nl) * scale * lens / (z(nl) * scale

+ Zoff)))

 Next nl

 FrontBackFace(nc) = sX(0) * sY(1) > sY(0) * sX(1)

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

30

 Dim Points() As Point = {New Point(sX(0), sY(0)), New

Point(sX(1), sY(1)), New Point(sX(2), sY(2))}

 GraphicsFun.DrawPolygon(PenColor, Points)

 Next nc

 End Sub

 Private Sub RenderObjectFlat()

 Dim scale As Decimal = 25

 Dim lens As Decimal = 3000

 Dim Zoff As Decimal = 5000

 Dim Xoff As Integer = 500

 Dim Yoff As Integer = 500

 decVertices(0, 0) = 0

 decVertices(1, 0) = 0

 decVertices(2, 0) = -Zoff / scale

 intFaces(0, 0) = 0

 intFaces(1, 0) = 0

 intFaces(2, 0) = 0

 Dim intShadeValue(intFaceNo) As Integer

 Dim colShade(intFaceNo) As Color

 Dim decLight() As Decimal = {0.5, 0.5, -0.5}

 Dim decIntensity As Decimal = 130

 Dim decAmbient As Decimal = 40

 ReDim decVerticesScreen(1, intVertexNo)

 Dim Points(intVertexNo) As Point

 For nl As Integer = 1 To intVertexNo

 decVerticesScreen(0, nl) = Xoff + (decVertices(0, nl) * scale *

lens / (decVertices(2, (nl)) * scale + Zoff))

 decVerticesScreen(1, nl) = Yoff + (decVertices(1, nl) * scale *

lens / (decVertices(2, (nl)) * scale + Zoff))

 Points(nl) = New Point(CInt(decVerticesScreen(0, nl)),

CInt(decVerticesScreen(1, nl)))

 Next nl

 Dim zVertex(intFaceNo) As Decimal

 Dim intFaceOrder(intFaceNo) As Integer

 For nc As Integer = 0 To intFaceNo

 zVertex(nc) = 0

 For nl As Integer = 0 To 2

 zVertex(nc) = zVertex(nc) + decVertices(2, intFaces(nl,

nc)) / 3

 Next nl

 intFaceOrder(nc) = nc

 Next nc

 Array.Sort(zVertex, intFaceOrder)

 Dim ClockAnticlock(intFaceNo) As Integer

 Dim Normal(2, intFaceNo) As Decimal

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

31

 Dim decEdge0(2, intFaceNo) As Decimal

 Dim decEdge1(2, intFaceNo) As Decimal

 Dim decEdge0Screen(1, intFaceNo) As Decimal

 Dim decEdge1Screen(1, intFaceNo) As Decimal

 Dim red As Decimal = Rnd()

 Dim green As Decimal = Rnd()

 Dim blue As Decimal = Rnd()

 Dim tot As Decimal = red + green + blue

 red = red / tot

 green = green / tot

 blue = blue / tot

 For nc As Integer = 1 To intFaceNo

 For ni As Integer = 0 To 2

 decEdge0(ni, nc) = decVertices(ni, intFaces(1, nc)) -

decVertices(ni, intFaces(0, nc))

 decEdge1(ni, nc) = decVertices(ni, intFaces(2, nc)) -

decVertices(ni, intFaces(1, nc))

 Next ni

 For ni As Integer = 0 To 1

 decEdge0Screen(ni, nc) = decVerticesScreen(ni, intFaces(1,

nc)) - decVerticesScreen(ni, intFaces(0, nc))

 decEdge1Screen(ni, nc) = decVerticesScreen(ni, intFaces(2,

nc)) - decVerticesScreen(ni, intFaces(1, nc))

 Next ni

 If decEdge0Screen(0, nc) * decEdge1Screen(1, nc) <

decEdge0Screen(1, nc) * decEdge1Screen(0, nc) Then

 ClockAnticlock(nc) = 1

 Else

 ClockAnticlock(nc) = +1

 End If

 Normal(0, nc) = decEdge0(1, nc) * decEdge1(2, nc) - decEdge0(2,

nc) * decEdge1(1, nc)

 Normal(1, nc) = decEdge0(2, nc) * decEdge1(0, nc) - decEdge0(0,

nc) * decEdge1(2, nc)

 Normal(2, nc) = decEdge0(0, nc) * decEdge1(1, nc) - decEdge0(1,

nc) * decEdge1(0, nc)

 Dim lenNormal As Decimal = Math.Sqrt(Normal(0, nc) * Normal(0,

nc) + Normal(1, nc) * Normal(1, nc) + Normal(2, nc) * Normal(2, nc))

 If lenNormal = 0 Then lenNormal = 1

 For ni As Integer = 0 To 2

 Normal(ni, nc) = Normal(ni, nc) * ClockAnticlock(nc) /

lenNormal

 Next ni

 Dim NormalLightCos As Decimal = ((Normal(0, nc) * decLight(0))

+ (Normal(1, nc) * decLight(1)) + (Normal(2, nc) * decLight(2)))

 If NormalLightCos < 0 Then

 NormalLightCos = 0

 End If

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

32

 intShadeValue(nc) = CInt((NormalLightCos * decIntensity) +

decAmbient)

 'colShade(nc) = Color.FromArgb(255, CInt(intShadeValue(nc) *

red), CInt(intShadeValue(nc) * green), CInt(intShadeValue(nc) * blue))

 colShade(nc) = Color.FromArgb(255, intShadeValue(nc),

intShadeValue(nc), intShadeValue(nc))

 Next nc

 For nc As Integer = intFaceNo To 0 Step -1

 If intFaceOrder(nc) = 0 Then Exit For

 Dim PenColor As New Pen(Color.Green)

 Dim PointsToDraw() As Point = {Points(intFaces(0,

intFaceOrder(nc))), Points(intFaces(1, intFaceOrder(nc))),

Points(intFaces(2, intFaceOrder(nc)))}

 GraphicsFun = Me.CreateGraphics

 Dim brushcolor As New SolidBrush(colShade(intFaceOrder(nc)))

 GraphicsFun.FillPolygon(brushcolor, PointsToDraw)

 'GraphicsFun.DrawPolygon(PenColor, PointsToDraw)

 Next nc

 End Sub

 Private Sub Form1_Paint(ByVal sender As Object, ByVal e As

System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 RenderObjectFlat()

 End Sub

 Private Sub btnRLeft_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnRLeft.Click

 Dim Cosangle = Math.Cos(angle)

 Dim Sinangle = Math.Sin(angle)

 For nc As Integer = 1 To intVertexNo

 oX = decVertices(0, nc)

 oY = decVertices(1, nc)

 oZ = decVertices(2, nc)

 oXnew = oX * Cosangle - oZ * Sinangle

 oZnew = oZ * Cosangle + oX * Sinangle

 decVertices(0, nc) = oXnew

 decVertices(2, nc) = oZnew

 Next nc

 Dim brushcolor As New SolidBrush(Color.White)

 GraphicsFun.FillRectangle(brushcolor, 0, 0, 1000, 1000)

 RenderObjectFlat()

 End Sub

Alex Hughes HND Computing Year 2 Unit38 3D Modelling and Animation MMA

33

 Private Sub btnRUp_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnRUp.Click

 Dim Cosangle = Math.Cos(angle)

 Dim Sinangle = Math.Sin(angle)

 For nc As Integer = 1 To intVertexNo

 oX = decVertices(0, nc)

 oY = decVertices(1, nc)

 oZ = decVertices(2, nc)

 oYnew = oY * Cosangle - oZ * Sinangle

 oZnew = oZ * Cosangle + oY * Sinangle

 decVertices(1, nc) = oYnew

 decVertices(2, nc) = oZnew

 Next nc

 Dim brushcolor As New SolidBrush(Color.White)

 GraphicsFun.FillRectangle(brushcolor, 0, 0, 1000, 1000)

 RenderObjectFlat()

 End Sub

End Class

